

Contents lists available at ScienceDirect

Journal of Alloys and Compounds

journal homepage: www.elsevier.com/locate/jallcom

Temperature-dependent photoluminescence studies on $Y_{2.93-x}Ln_xAl_5O_{12}$:Ce_{0.07} (Ln = Gd, La) phosphors for white LEDs application

Qiyue Shao^{a,*}, Huijun Li^a, Yan Dong^a, Jianqing Jiang^a, Chao Liang^b, Jinhua He^b

^a Jiangsu Key Laboratory of Advanced Metallic Materials, School of Materials Science and Engineering, Southeast University, 2 Southeast University Road, Nanjing 211189, PR China ^b Jiangsu Subote New Materials Co., Ltd., Nanjing 210008, PR China

ARTICLE INFO

Article history: Received 4 October 2009 Received in revised form 14 March 2010 Accepted 18 March 2010 Available online 25 March 2010

Keywords: White LEDs YAG:Ce³⁺ phosphor Luminescence Thermal quenching

1. Introduction

White light emitting diodes (w-LEDs), the so-called next generation solid-state lighting sources, are gaining lots of attentions because of their numerous advantages over the existing incandescent and fluorescent lamps in energy saving, reliability, lifetime and environment-amity [1]. Although the white radiation can be generated from many methods, the combination of a GaN-based blue LED and a cerium-activated vttrium aluminum garnet (YAG:Ce³⁺) phosphor is the most popular and sophisticated method at present [2]. However, this strategy suffers from low color-rendering index (CRI) and high color-temperature due to the weak emission intensity in red spectral region. Using a large rare earth ion, such as Gd³⁺ and Tb³⁺, to substitute the dodecahedral site of the garnet structure can shift the Ce³⁺ emission band to a longer wavelength because of the larger crystal splitting of the 5d energy level of Ce^{3+} ions [3,4]. It is beneficial to improve the color-temperature and color-rendering properties of w-LEDs based on YAG:Ce³⁺ phosphor [4].

For w-LEDs application, phosphors are coated on a chip which excites them. The heat generated by the LED chip will result in serious problems not only to the chip itself but also to the phosphors [5,6]. The emission intensity of luminescent materials is decreased with increasing the operation temperature, and this behavior is well known as thermal quenching. It is obvious that the thermal quenching behavior of phosphors has important effects on the effi-

ABSTRACT

 Gd^{3+} -doped, La^{3+} -doped and Gd^{3+}/La^{3+} co-doped $Y_3Al_5O_{12}$: Ce^{3+} (YAG: Ce^{3+}) phosphors were prepared by high-temperature solid-state reaction. Their crystal structure and photoluminescence properties at various temperatures (25–200 °C) were investigated. By increasing the substitution concentration of Gd^{3+} in YAG: Ce^{3+} phosphor, the Ce^{3+} emission band shifts toward longer wavelength but shows a stronger thermal quenching. Addition with small amount of La^{3+} can improve the thermal stability of YAG: Ce^{3+} phosphors without leading to evident shifts of Ce^{3+} emission band. The La^{3+} and Gd^{3+} doping can complement each other. The Gd^{3+}/La^{3+} co-doped YAG: Ce^{3+} phosphors have longer wavelength emission and furthermore exhibit good thermal stability, which is especially favorable for high power white LEDs aiming at general illumination.

© 2010 Elsevier B.V. All rights reserved.

ciency and chromatic properties of w-LEDs. Therefore, the thermal quenching property is also one of the most important technological parameters for phosphors applied in white LEDs [7,8], especially in high power white LED devices. The promising phosphors should perform well and retain their luminance and chromatic properties at the elevated temperatures of the LED junction (>100 °C) [9]. Setlur et al. have investigated the temperature-dependent photoluminescence properties of Ga³⁺-doped and Tb³⁺-doped YAG:Ce³⁺ phosphors, and found that Ga³⁺ and Tb³⁺ substitution will lead to stronger thermal quenching [10]. Chiang et al. have reported Gd³⁺ substituting Y³⁺ in Tb₃Al₅O₁₂:Ce³⁺ phosphors can induce the redshifts of emission wavelength and unfortunately worsen their thermal quenching properties [5]. An efficient way to improve the temperature stability of YAG:Ce³⁺ phosphor is absent, and fur-ther studies are still needed. In this paper, Gd³⁺-doped, La³⁺-doped and Gd³⁺/La³⁺ co-doped YAG:Ce³⁺ phosphors were synthesized by the high-temperature solid-state reaction method. The luminescent properties of these phosphors at elevated temperature were studied.

2. Experimental

Gd³⁺-doped, La³⁺-doped and Gd³⁺/La³⁺ co-doped YAG:Ce³⁺ phosphors were synthesized by high-temperature solid-state reaction. The Ce³⁺ concentration of these samples remained constant at 7 mol%. Our early studies indicated that YAG:Ce³⁺ phosphor with 7 mol% Ce³⁺ had maximum emission intensity [11]. The starting materials of Y₂O₃ (99.99%), Al₂O₃ (99.99%), CeO₂ (99.99%), La₂O₃ (99.99%) and Gd₂O₃ (99.99%) were weighted with a certain stoichiometric ratio, and mixed thoroughly along with a certain amount of H₃BO₃ and BaF₂ as flux. These homogeneous mixtures were placed in an alumina crucible with a lid and then calcined at 1550 °C for 6 h in a reducing atmosphere (75% H₂, 25% N₂).

^{*} Corresponding author. Tel.: +86 25 52090630; fax: +86 25 52090634. *E-mail address*: qiyueshao@seu.edu.cn (Q. Shao).

^{0925-8388/\$ -} see front matter © 2010 Elsevier B.V. All rights reserved. doi:10.1016/j.jallcom.2010.03.159

Fig. 1. XRD patterns of $Y_{2,93-x}Gd_xAl_5O_{12}$: Ce_{0.07} phosphors with different x values.

The crystal structure of the final products was identified by powder X-ray diffraction (Shimadzu XD-3A) with Cu K α radiation generated at 40 kV/30 mA. The photoluminescence spectra of the samples were analyzed by a Hitachi F-7000 fluorescence spectrophotometer (with an R928F PMT) at room temperature. The temperature-dependent luminance of the phosphors was recorded by a self-made measuring system, which includes a temperature-controlled heating part and a fluobrightness meter (Zhejiang University Sensing Instruments Co., Ltd., China). The heating part consists of a resistance-heating plate and a temperature controller. The thermocouple directly embeds within the phosphors to assure the accuracy of temperature was tested by setting its luminance of a certain phosphor at elevated temperature was tested by setting its luminance at room temperature as 100%. A blue LED ($\lambda_{em} = 460$ nm) was used as excitation source for temperature-dependent luminance measurements.

3. Results and discussion

3.1. Gd³⁺-doped YAG:Ce³⁺ phosphors

Fig. 1 shows the XRD patterns of $Y_{2,93-x}Gd_xAl_5O_{12}$: Ce_{0.07} phosphors (x = 0, 0.2, 1.0, 1.5, and 2.5). As $x \le 1.0$, the products completely phase transform to a pure garnet structure. The Gd³⁺-doped phosphor with x = 1.5 presents a minor intermediate phase, gadolinium aluminum pervoskite (GdAlO₃). As the x value increases to 2.5, the diffraction intensity of GdAlO₃ phase increases too. In the Gd₂O₃-Al₂O₃ system, the garnet structure does not seem to be a stable phase [5]. Gd³⁺ substituting Y³⁺ with higher concentration will lead to the formation of secondary phase (GdAlO₃).

Fig. 2 represents the emission spectra of $Y_{2.93-x}Gd_xAl_5O_{12}$: Ce_{0.07} phosphors with various *x* values. At the same activator concentration and excitation light (λ_{ex} = 460 nm), the emission wavelength is shifted to the red by increasing the Gd³⁺ content in the YAG lat-

Fig. 2. Photoluminescence emission spectra of $Y_{2:93-x}Gd_xAl_5O_{12}$: Ce_{0.07} phosphors with varying *x* values at room temperature ($\lambda_{ex} = 460$ nm).

tice. As the x value varies from 0 to 2.5, the emission wavelength shifts from ~550 nm to ~580 nm. Longer emission wavelength of Ce³⁺-activated garnet phosphor is favorable for improving the color-temperature and color-rendering properties of w-LEDs. However, it should be noted that the emission intensity of Gd³⁺-doped YAG:Ce³⁺ phosphors is also decreased remarkably with the increase of Gd³⁺ content.

Fig. 3(a) shows the relative luminance of the pure and Gd^{3+} doped YAG: Ce^{3+} phosphor (Y_{0.43}Gd_{2.5}Al₅O₁₂: $Ce_{0.07}$) varying with temperature (25-200 °C). The luminance of the samples at elevated temperature is normalized to that at 25 °C. The pure YAG:Ce³⁺ exhibits a remarkable thermal quenching behavior. Its luminance falls by 12% at 150 °C, and by 20% at 200 °C. The introduction of Gd³⁺ significantly increases the temperature sensitivity of YAG:Ce³⁺. The relative luminance of Y_{0.43}Gd_{2.5}Al₅O₁₂:Ce_{0.07} falls by 70% at 150 °C, and by 87% at 200 °C. The thermal quenching property of phosphors with various Gd³⁺ contents was characterized by the ratio of their luminance at 150 °C to that at 25 °C, notated as L_{150}/L_{25} . Fig. 3(b) shows the ratios of L_{150}/L_{25} of Gd³⁺-doped phosphors as a function of Gd³⁺ concentration. The thermal quenching behavior of Ce³⁺ luminescence is very sensitive to the Gd³⁺ doping, and increasing the Gd³⁺ concentration in YAG:Ce³⁺ leads to enhanced thermal quenching. It is well known that luminescent materials with higher quenching temperature have a stiff structure [12]. Kanke and Navrotsky noted that the distance of Gd-O at the dodecahedral site of garnet is lager than that of Y-O [13]. This implies that the garnet structure becomes soft with the introduction of Gd³⁺. Therefore, the thermal quenching behavior of Gd³⁺-doped phosphor becomes stronger.

Fig. 3. (a) Normalized luminance of Y_{2.93}Al₅O₁₂:Ce_{0.07} and Y_{0.43}Gd_{2.5}Al₅O₁₂:Ce_{0.07} phosphors at various temperatures. (b) The ratios of luminance at 150 °C to that at 25 °C (L_{150}/L_{20}) of Y_{2.93-x}Gd_xAl₅O₁₂:Ce_{0.07} phosphors as a function of Gd³⁺ concentration.

Fig. 4. XRD patterns of $Y_{2,93-x}$ La_xAl₅O₁₂:Ce_{0.07} phosphors with different *x* values.

3.2. La^{3+} -doped YAG:Ce³⁺ phosphors

The ion radii of La³⁺ (0.116 nm) is much bigger than that of Y³⁺ (0.102 nm) [14], and therefore only small amount of La³⁺ was introduced to investigate its effects on the luminescence property and thermal quenching behavior of YAG:Ce³⁺. Fig. 4 shows the XRD patterns of Y_{2.93-x}La_xAl₅O₁₂:Ce_{0.07} phosphors (*x* = 0, 0.02, 0.05, 0.1, and 0.2). It can be found that as *x* = 0.05–0.2, an obvious intermediate phase (LaAlO₃) can be detected except for the dominant garnet structure. There is a competition between perovskite (LaAlO₃) and garnet formation, which limits the solubility of larger La³⁺ ions.

Fig. 5 shows the emission spectra of $Y_{2,93-x}La_xAl_5O_{12}$:Ce_{0.07} phosphors with varying x values at room temperature. As only small amount of La³⁺ was introduced, the emission bands of La³⁺doped YAG:Ce³⁺ phosphors have no evident shifts in comparison with the un-doped sample. The emission intensity of La³⁺-doped samples descends slightly with La³⁺ concentration increasing, which is coincides with previous reports [3]. Fig. 6(a) shows the normalized luminance of the pure and La³⁺-doped YAG:Ce³⁺ phosphor varying with temperature (25-200 °C). The luminance of Y_{2.88}La_{0.05}Al₅O₁₂:Ce_{0.07} falls by 8% at 150 °C and by 13% at 200 °C, better than that of the pure YAG:Ce³⁺ (12% at 150°C, 20% at 200 °C). Fig. 6(b) shows the ratios of luminance at 150 °C to that at 25 °C of $Y_{2,93-x}La_xAl_5O_{12}$:Ce_{0.07} phosphors with various *x* values. It indicates that addition by small amount of La^{3+} (x = 0.02–0.1) is favorable to improve the thermal quenching property of YAG:Ce³⁺ phosphor.

The ion radii of La^{3+} is larger than that of Y^{3+} and $Gd^{3+}(0.106 \text{ nm})$ [14], and therefore the structure of La^{3+} -doped YAG:Ce³⁺ should become much softer. In contrast, the YAG:Ce³⁺ doped with small amount of La^{3+} exhibits weaker thermal quenching. In addition,

Fig. 5. Photoluminescence emission spectra of $Y_{2.93-x}La_xAl_5O_{12}$: Ce_{0.07} phosphors with varying *x* values at room temperature.

there does not appear to be significant changes in Ce³⁺excitation (not shown) and emission spectra and in the Stokes shift. Bachmann et al. have reported that thermally activated concentration quenching makes a main contribution to the thermal quenching behavior of highly Ce³⁺-doped YAG phosphors (x > 1%) [15]. One possible reason for weaker thermal quenching of La³⁺-doped samples is that secondary phases (LaAlO₃) formed due to La³⁺ addition have a preferentially large amount of Ce³⁺ ions and therefore reduce the Ce³⁺ content in garnet phases. It could lead to an improved thermal quenching behavior in La³⁺-doped samples.

3.3. Gd³⁺/La³⁺ co-doped YAG:Ce³⁺ phosphors

Substituting Y³⁺ with Gd³⁺ can shifts the emission band of YAG:Ce³⁺ to the long wavelength side, which can improve the color-temperature and color-rendering properties of the w-LEDs due to the enhanced emission intensity in red spectral region. However, the thermal quenching property of YAG:Ce³⁺ is unfortunately worsened with increasing the Gd³⁺ concentration. In contrast, adding La³⁺ in YAG:Ce³⁺ can improve the thermal stability of Ce³⁺ emission without inducing evident emission shifts. It can be expected that the La³⁺ and Gd³⁺ doping can complement each other to produce the garnet phosphor with desirable emission spectrum and good thermal stability.

The Gd³⁺/La³⁺ co-doped phosphors (Y_{2.43-y}Gd_{0.5}La_yAl₅O₁₂: Ce_{0.07}) were prepared by the same process. The Gd³⁺ concentration of these samples remains constant, and the La³⁺ concentration *y* varies from 0 to 0.2. XRD data (not shown) indicate that as $y \ge 0.05$, a minor intermediate phase (LaAlO₃) can be detected, and no GdAlO₃ phase has formed. Independent of La³⁺ content, these Gd³⁺/La³⁺ co-doped samples have a longer emission

Fig. 6. (a) Normalized luminance of $Y_{2,93}Al_5O_{12}$: Ce_{0.07} and $Y_{2,88}La_{0.05}Al_5O_{12}$: Ce_{0.07} phosphors at various temperatures. (b) The ratios of luminance at 150 °C to that at 25 °C (L_{150}/L_{20}) of La³⁺-doped phosphors as a function of La³⁺ concentration.

Fig. 7. The ratios of luminance at $150 \degree C$ to that at $25 \degree C$ of $Y_{2,43-y}Gd_{0.5}La_yAl_5O_{12}$: Ce_{0.07} phosphors with various La³⁺ content.

wavelength ($\lambda_{em} = \sim 560$ nm), in comparison with pure YAG:Ce³⁺ ($\lambda_{em} = \sim 550$ nm). Fig. 7 shows the ratios of luminance at 150 °C to that at 25 °C of Y_{2.43-y}Gd_{0.5}La_yAl₅O₁₂:Ce_{0.07} phosphors with various La³⁺ content. The Y_{2.43}Gd_{0.5}Al₅O₁₂:Ce_{0.07} phosphor (no La³⁺ doping) exhibits a significant thermal quenching behavior, as mentioned above. At 150 °C it only can retain 78% of its luminance at 25 °C. Gd³⁺/La³⁺ co-doped YAG:Ce³⁺ phosphors have a better thermal stability than singly Gd³⁺-doped phosphor. For example, at 150 °C the Y_{2.33}Gd_{0.5}La_{0.1}Al₅O₁₂:Ce_{0.07} phosphor can retain 84% of its luminance at 25 °C. These results prove that there is a possibility to develop such garnet phosphor that has a longer wavelength emission and better thermal stability at elevated temperature.

4. Conclusions

In this paper, Gd³⁺-doped, La³⁺-doped, Gd³⁺-La³⁺ co-doped YAG:Ce³⁺ phosphors were prepared by solid-state reaction. Their

photoluminescence properties at elevated temperature were studied. Gd^{3+} substitution shifts the Ce^{3+} emission to the red, at the expense of decreasing the emission intensity and deteriorating the thermal quenching. Adding small amount of La^{3+} does not lead to significant shifts of Ce^{3+} emission band, and can improve the thermal quenching property of YAG: Ce^{3+} . The Gd^{3+}/La^{3+} codoped phosphors exhibit a better thermal stability and an emission redshift, suitable for high power w-LEDs applied in general illumination field.

Acknowledgements

This work was financially supported the Cultivation Fund of the Key Scientific and Technical Innovation Project from Ministry of Education of China (No. 707029) and the Natural Science Foundation of Jiangsu Province of China (No. K2008317).

References

- [1] M.S. Shur, A. Zukauskas, Proc. IEEE 93 (2005) 1691-1701.
- [2] S. Nakamura, S. Perton, G. Fasol, The Blue Laser Diode: GaN Based Light Emitters
- and Laser, Springer, Berlin, 1997.
- [3] L. Kong, S.C. Gan, G.Y. Hong, J.L. Zhang, J. Rare Earths 25 (2007) 692-696.
- [4] H.S. Jang, W.B. Im, D.C. Lee, D.Y. Jeon, S.S. Kim, J. Lumin. 126 (2007) 371–377.
- [5] C.C. Chiang, M.S. Tsai, M.H. Hon, J. Electrochem. Soc. 155 (2008) B517–B520.
- [6] T. Tamura, T. Setomoto, T. Taguchi, J. Lumin. 87-89 (2000) 1180-1182.
- [7] J.H. Ryu, Y.G. Park, H.S. Won, S.H. Kim, H. Suzuki, J.M. Lee, C. Yoon, M. Nazarov, D.Y. Noh, B. Tsukerblatc, J. Electrochem. Soc. 155 (2008) J99–J104.
- [8] R.J. Xie, N. Hirosaki, Sci. Technol. Adv. Mater. 8 (2007) 588–600.
 [9] G. Gundiah, Y. Shimomura, N. Kijima, A.K. Cheetham, Chem. Phys. Lett. 455
- (2008) 279–283. [10] A.A. Setlur, A.M. Srivastava, H.A. Comanzo, G. Chandran, H. Aiyer, M.V. Shankar,
- S.E. Weaver, Proc. SPIE 5187 (2004) 142–149.
- [11] H.J. Li, Q.Y. Shao, Y. Dong, J.Q. Jiang, C. Liang, J.H. He, Chin. J. Lumin. 29 (2000) 984–987 (in Chinese).
- [12] G. Blasse, B.C. Grabmaier, Luminescent Materials, Springer, Berlin, 1994.
- [13] Y. Kanke, A. Navrotsky, J. Solid State Chem. 141 (1998) 424–426.
- [14] R.D. Shannon, Acta Cryst. A32 (1976) 751–767.
- [15] V. Bachmann, C. Ronda, A. Meijerink, Chem. Mater. 21 (2009) 2077–2084.